Pulmonary Toxicity of (Lung) Cancer Therapies

Lorriana Leard, MD
Professor of Clinical Medicine
Vice Chief, Clinical Operations
Pulmonary, Critical Care, Allergy and Sleep Medicine
University of California San Francisco
Disclosure Statement

I will discuss off label use and/or investigational use of the following drugs/devices:

Prednisone

The following relevant financial relationships exist related to my role in this session:

No relationships to disclose
I'm having trouble breathing.
Outline: Treatment Related Pulmonary Toxicity

- Potential Etiologies / Patterns
 1. Chemotherapy (docetaxel, gemcitabine, bleomycin)
 2. Targeted therapy (EGFR inhibitors, mTOR inhibitors, PD-1 and PD-L1 inhibitors)
 3. Radiation therapy

- Diagnosis / Grade of Pneumonitis

- Management
The importance of this challenge

- Many new therapies being developed / approved
- We must be aware of these therapies and understand their mode of action
- Important to learn to recognize, diagnose and effectively manage their toxicities
Case 1:
Special Thanks to UCSF Clinical Fellow
Alyssa Perez
Case 1

- 75 M with a history of A-fib s/p ablation, HTN, and metastatic prostate CA on treatment with docetaxel who presents with hypoxemic respiratory failure requiring high flow nasal cannula
Case 1

- Onset of SOB 10 days prior
- Rapidly progressed
- On day of presentation, EMS was called after home O2 sat in the 60s
- In ED, hypoxemic and tachypneic in the 30s, placed on HFNC FiO2 100%, 40LPM
Case 1

PMHx/PSHx:
1. Metastatic Prostate CA: dx 2006, metastatic in 2013, s/p XRT, anti-hormone agents, pembrolizumab x 2 (last 1/2017), and now on docetaxel
2. HTN
3. A-fib s/p cardioversion,
4. Appendectomy in 2011
5. Laminectomy with fusion in 2013 for metastatases

Family History: father with prostate CA

Social History: never smoker, 1 glass wine nightly, no illicits, no exposures

Home Meds:
1. cholecalciferol
2. omega-3 fish oil
3. Dexamethasone

Allergies: none
Case 1

EXAM:
Vitals: T: 37.2 HR: 115 BP: 80/60 RR: 30 O2 Sat: 91% (on 100% FiO2)
General: increased work of breathing
CV: irregularly, irregular, tachycardic, S1, S2, no murmurs
Resp: bilateral crackles diffusely
Ext: 2+ pitting edema to the mid shin b/l, +DP and TP pulses
Case 1

LABS:

BUN 41
Creat 1.13
WBC 4.4
Hgb 7.6
Trop < 0.04
BNP 484
LDH 382
Case 1: Hospital course

Day 1:
- Started on vancomycin and ertapenem
- Boluses of normal saline → BPs normalized.
- Pan cultured (blood, urine, sputum) & Resp viral panel sent
- Diuresed with lasix
Case 1: Hospital course

Day 2:

- TTE normal (EF 60%)
- Antibiotics broadened to include pseudomonal and atypical coverage. Diuresis continued.
- Micro: cultures remain NGTD, including Resp viral panel
- Remains afebrile, normotensive. Continues on HFNC with FiO2 100% on 40L, sats in low 90s
- CT scan obtained.
Case 1

Differential diagnosis?
Case 1: Hospital course

- Pulmonary Consulted.

Questions
 - What is the diagnosis?
 - Could this be Drug (Docetaxel) induced pneumonitis?
 - Should we give steroids?
Diagnostic algorithm of pneumonitis

- History/Clinical examination
 - Lung co-mobidities
 - Type and dose of agent
 - Symptoms (Cough, Fever, Dyspnoea, Hypoxia)
Drug induced Lung Injury

- Unknown prevalence, thought to be under recognized globally

- Can be acute, sub-acute, or chronic

- Pathogenesis:
 - Direct damage to pneumocytes
 - Capillary leak syndrome
 - Acute or delayed hypersensitivity reaction

Pre-disposing characteristics

- Receiving prior chemotherapy
- Autoimmune diseases (RA, IBD),
- Extremes of age
- Prior radiation
- Pre-existing lung disease
- Smoking history
Histologic patterns

- NSIP
- OP
- Interstitial granulomas
- UIP
- DAH +/- capillaritis
- DAD
- PVOD
- DIP
- LIP
- PAP
- Eosinophilic pneumonia

Diagnostic algorithm of pneumonitis

Recommended work-up depending on pneumonitis grade:

- Chest X-ray
- Arterial blood gases
- HRCT
- Bronchoscopy with BAL +/- biopsy
- PFT

Rule out:

- Pulmonary infection
- Metastatic disease (lymphangitis carcinomatosa)
- Cardiogenic pulmonary oedema
- Pulmonary embolus, etc
Evaluation of patient with possible Drug Induced Lung Injury

<table>
<thead>
<tr>
<th>Steps</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFTs</td>
<td>• Lung volumes and DLCO (for baseline and monitoring)</td>
</tr>
</tbody>
</table>
| **Chest CT scan** | • Exclude other possible diagnoses (tumor progression, pleural effusion, PE)
• Assess pattern / monitor for change |
| **Bronchoscopy** | • BAL may be useful to rule out infection (particularly in fever / infection suspected) or to assess the lung inflammation profile
• TBBx may help to obtain histology, assess for lymphangitic disease |
| **Diagnostic tests to exclude opportunistic infections** | • Bacterial pneumonia (typical acute lobar pneumonia)
• Viral pneumonia (Respiratory Viral PCR)
• Other bacterial infections (including *Legionella* infection, particularly in hospitalized patients)
• Invasive fungal infections (e.g., *Pneumocystis jiroveci*, *Pneumocystis carinii* infection, Aspergillosis) |
| **Consider other causes** | • Pulmonary edema / Heart failure |
Day 2 continued:

- All micro data NGTD including blood, sputum, urine, and RVP

- Not improving despite diuresis and Echo did not suggest heart failure

- Bronchoscopy considered but deferred given oxygen requirement and DNR/DNI status
Drug induced Lung Injury

Radiologic and Pathologic Findings with Docetaxel Induced Lung Injury:

- Acute ILD
- Subacute ILD
- Transient Infiltrates
- Pulmonary Edema
- ARDS
- DAH
- DAD

Docetaxel induced pneumonitis

Docetaxel = taxane used to treat solid tumors

Proposed Mechanisms of Injury:
- **Acute: Type 1 Hypersensitivity reaction**
 - Dyspnea, bronchospasm, hypotension
 - Incidence is 30% of patients; decreases to 1-3% of patients with steroid pre-medication

- **Acute-Subacute: Type IV Hypersensitivity reaction**
 - Few hours to 2 weeks
 - Characterized by bilateral pulmonary opacities

Docetaxel induced pneumonitis

Acute-Subacute: Type IV Hypersensitivity reaction

- Presents as insidious onset
- Symptoms: dyspnea, malaise, chest pain, cough, and fever
- Also associated with edematous state: edema and pleural effusions
- Imaging generally shows bilateral pulmonary infiltrates
 - Most common pattern = NSIP, DAD, pleural effusions

Docetaxel induced pneumonitis

- Factors that increase likelihood of developing severe pneumonitis:
 - Schedule > Dose
 - Combination therapy with gemcitabine
 - Radiation treatment

- A 2012 retrospective study found increased incidence of pneumonitis in patients with NSCLC treated with docetaxel who had baseline pulmonary dysfunction
 - 25.9% vs 4.6% general incidence
 - Recommended against the use of docetaxel in patients with pre-existing lung disease

Docetaxel induced pneumonitis

- Thought to be a steroid responsive process but case reports range from steroid responsive pneumonitis to steroid unresponsive pneumonitis to development of fibrosis

- General recommendation is prompt treatment with steroids
 - No consensus on dose

Case 1: Hospital course

Day 3:
- Started on methylprednisolone 125 mg IV Q6 hours
- Patient subjectively feels improved

Day 4:
- Improvement in oxygen requirement to 50% FiO2 40L HFNC
- Patient continues to feel better, no longer tachypneic at rest
- Chest CT repeated
Case 1: Hospital course

Day 5:
- Ongoing improvement, down to 6L NC
- Steroids changed to prednisone 40 mg PO daily

Day 6:
- Discharged home
- Plan for slow taper of prednisone
Take away points

- Need to consider drug induced lung injury in patients on chemotherapy

- Docetaxel is a rare but well-associated cause of pneumonitis, most commonly presenting with subacute dyspnea and bilateral ground glass opacities
 - Treatment is prompt initiation of steroids, 0.5-0.7 mg/kg prednisone likely sufficient

- Consider avoiding docetaxel in patients with pre-existing lung disease
Case 2:
Case 2

67 y.o. man with metastatic Prostate Cancer (bone, testes, brain). Initially diagnosed in 2005, s/p multiple treatments. Referred to pulmonary for complaints of dyspnea on exertion, dry cough x 3 weeks and an abnormal chest CT scan.

SpO2 at rest 96% on RA
Case 2 – What is your differential diagnosis?

- Metastases to lung
- Pulmonary emboli
- Infections
- Pulmonary edema
- Pneumonitis due to drugs or RT
Case 2 Baseline in 3/2017
Case 2 Baseline in 3/2017
Case 2 Baseline in 3/2017
Case 2 in 9/2017
Case 2 in 9/2017
Case 2

- Treated with XRT and adjuvant docetaxel (completed 12/2007)
- 2 years on Goserelin (LHRH analogues) and Bicalutamide (antiandrogens) until 2009
- Multifocal symptomatic brain mets s/p CK
- Carboplatin/taxotere → 11/2016 – 1/2017
- New brain mets s/p CK
- Started on pembrolizumab in 3/2017
Diagnostic algorithm of pneumonitis

Rule out:
- Pulmonary infection
- Metastatic disease (lymphangitis carcinomatosa)
- Cardiogenic pulmonary oedema
- Pulmonary embolus, etc

Yes

Consider drug related pneumonitis

No

Treat as appropriate
So let's consider these newer targeted agents?

1. TKIs: EGFR
2. mTOR inhibitors
3. PD-1 and PD-L1 inhibitors
TKIs and ILD

- 1st case reported in 2003 in Lancet – Gefitinib
- Multiple reports since then

<table>
<thead>
<tr>
<th></th>
<th>DAD</th>
<th>BO</th>
<th>COP</th>
<th>HP</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefitinib</td>
<td>++</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Erlotinib</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Sorofenib</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

mTOR inhibitors

- Sirolimus
- Everolimus
- Temsirolimus
PD-1

Anti-PD-1 monoclonal antibodies
- Nivolumab
- Pembrolizumab (previously lambrolizumab)
- Pidilizumab

Anti-PD-L1 mAbs
- Durvalumab
- Atezolizumab
PD-1 and PD-L1 mAbs

Toxicities with anti-PD-1/PD-L1 mAbs appear to be less common and less severe

7% to 12% in patients receiving single-agent anti-PD-1/PD-L1 mAbs
PD-1 and PD-L1 mAbs

Adverse events of anti-PD-1/PD-L1 therapy

- Fatigue
- Pyrexia, chills, infusion reactions
- Skin rash (maculopapular, papulopustular, Sweet's syndrome, follicular, or urticarial dermatitis)
- Diarrhea/colitis
- Endocrine toxicities (hypophysitis, hypothyroidism, hyperthyroidism, thyroiditis, and adrenal insufficiency)
- Hepatic toxicities (elevations in AST and ALT levels)
- Pneumonitis
Time to development of pneumonitis after starting PD-1 or PD-L1 inhibitor

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559901/
Radiographic pattern of pneumonitis on PD-1 or PD-L1

<table>
<thead>
<tr>
<th>Radiologic Subtypes</th>
<th>Representative Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptogenic organizing pneumonia-like</td>
<td></td>
<td>Discrete patchy or confluent consolidation with or without air bronchograms</td>
</tr>
<tr>
<td>(n = 5, 19%)</td>
<td></td>
<td>Predominantly peripheral or subpleural distribution</td>
</tr>
<tr>
<td>Ground glass opacities</td>
<td></td>
<td>Discrete focal areas of increased attenuation</td>
</tr>
<tr>
<td>(n = 10, 37%)</td>
<td></td>
<td>Preserved bronchovascular markings</td>
</tr>
<tr>
<td>Interstitial</td>
<td></td>
<td>Increased interstitial markings, interlobular septal thickening</td>
</tr>
<tr>
<td>(n = 6, 22%)</td>
<td></td>
<td>Peribronchovascular infiltration, subpleural reticulation</td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td></td>
<td>Honeycomb pattern in severe patient cases</td>
</tr>
<tr>
<td>(n = 2, 7%)</td>
<td></td>
<td>Hypersensitivity
Centrilobular nodules
Bronchiolitis-like appearance
Tree-in-bud micronodularity</td>
</tr>
<tr>
<td>Pneumonitis not otherwise specified</td>
<td></td>
<td>Mixture of nodular and other subtypes
Not clearly fitting into other subtype classifications</td>
</tr>
</tbody>
</table>
Grade of pneumonitis on PD-1 or PD-L1 inhibitor

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559901/
Clinical algorithm of drug-induced pneumonitis/pulmonary fibrosis

Grade 1
Asymptomatic, only radiological changes

- Clinical monitoring every cycle
- Lung CT scan every two cycles until return to baseline

No dose adjustment

Grade 2

- Clinical monitoring every cycle
- Lung CT scan every two cycles until return to baseline

Grade 2A
Minor respiratory symptoms (slight cough)

- Close clinical monitoring
- Lung CT scan after 2 weeks if symptoms persist
- Consider steroids after infection is ruled out

No dose adjustment

Grade 2b
Severe cough and dyspnoea

- Interruption of the drug; consider re-start with 50% DR if recovery to ≤G1 within 2 weeks and the drug is a targeted agent
- Permanent withdrawal if the drug is a chemotherapeutic

Grade 3
Interference with ADL

- Admission to hospital
- Perform bronchoscopy with BAL +/- biopsy
- Consider IV steroids
- Consider O2 and IV antibiotics

Grade 4
Life-threatening

- Permanent withdrawal

If recurs consider permanent discontinuation

Case 2 – Follow up

- Treated with **Prednisone** – initially 70 mg (1 mg / kg) daily and slowly tapered over 4 months
- 1/2018 **pembrolizumab** restarted
Case 2 – October 2017
Take Home Points from Diagnosis / Management of Drug Induced Pneumonitis

A question for you…

54 year old woman who has been responding to treatment with pembrolizumab for lung cancer now develops Grade 1 drug induced pneumonitis. Which of the following is the most appropriate recommendation?

A. Stop pembrolizumab permanently
B. Hold pembrolizumab. If symptoms imaging improves within 1 week, resume therapy.
C. Continue pembrolizumab with 50% dose reduction.
D. No dose adjustment if needed. Continue to monitor clinically and with repeat chest CT scans.
A question for you…

54 year old woman who has been responding to treatment with pembrolizumab for lung cancer now develops Grade 1 drug induced pneumonitis. Which of the following is the most appropriate recommendation?

A. Stop pembrolizumab permanently
B. Hold pembrolizumab. If symptoms imaging improves within 1 week, resume therapy.
C. Continue pembrolizumab with 50% dose reduction.
D. No dose adjustment if needed. Continue to monitor clinically and with repeat chest CT scans.
<table>
<thead>
<tr>
<th>Grade</th>
<th>Presentation</th>
<th>Diagnostic Testing</th>
<th>Management</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asymptomatic with Radiographic changes only</td>
<td>Chest CT scanning Consider Bronch +/- other microbial assessment</td>
<td>Continue therapy Monitor sx q3 days</td>
<td>Repeat Chest CT after every cycle or if develops sx.</td>
</tr>
<tr>
<td>2</td>
<td>Mild / Moderate new symptoms</td>
<td>HOLD therapy Monitor sx daily Oral prednisone (1mg/kg/d)</td>
<td>If improves to < Grade 1 w/in 3 days, resume therapy. If persists, stop therapy. Taper steroids over 1+ mo.</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>Severe or life threatening Worsening hypoxia</td>
<td>STOP therapy Hospitalize IV methylpred 2-4 mg/kg/d</td>
<td>After sx improve to < Grade 1, taper steroids over 6+ wks If worsens, consider additional immunosuppression</td>
<td></td>
</tr>
</tbody>
</table>
Case 3:
Special Thanks to UCSF Clinical Fellow
Shoshana Zha
Case 3: 78 year-old man presenting with worsening dyspnea

- 2004: Adenocarcinoma stage IA RLL lobectomy
- February 2017: Biopsy proven adenocarcinoma
- December 2016: Enlarging right middle lobe nodule
- March 20th – 24th 2017: SBRT 5000 cGy in 5 fractions
- June 22nd 2017: Admitted to UCSF
- June 2017: Dry cough, low grade fever and progressive dyspnea 7-day treatment for CAP

Special thanks to Shoshana Zha, MD for case / slides
Case 3: Additional History

PMH
- Type-II DM
- CAD s/p CABG 6/2016, persistent L pleural effusion
- CHF (EF 50-55%)
- A-fib & sick sinus with pacemaker
- HTN
- CKD stage IV
- COPD: FEV1 1.4 (67%)

MEDICATIONS
- ASA
- Atorvastatin
- Metoprolol XL
- Bumex 2mg BID
- Coumadin
- Glargine
- Pioglitazone
- Repaglinide
- Spiriva daily,
- Albuterol PRN

SH:
- Smoked 50-60 pack years, quit ~2003
- Occasional alcohol
- No illicit drug use

Special thanks to Shoshana Zha, MD for case / slides
Special thanks to Shoshana Zha, MD for case / slides
Special thanks to Shoshana Zha, MD for case / slides
Special thanks to Shoshana Zha, MD for case / slides
Special thanks to Shoshana Zha, MD for case / slides
Special thanks to Shoshana Zha, MD for case / slides
Case 3: Differential diagnosis

- Infection
- Radiation pneumonitis
- Organizing pneumonia
- Diffuse alveolar hemorrhage
- Hypervolemic
- Malignancy

Special thanks to Shoshana Zha, MD for case / slides
Case 3: Workup/management

- Started steroids 60mg/day and levofloxacin
- Bronchoscopy without sign of infection or DAH
- Began to improve
- Steroids tapered: 60mg x 6 days → 40mg x 3 days → 20mg daily in setting of rapid improvement + difficult glycemic control
- Discharged on 20mg/day to be taken until follow-up

Special thanks to Shoshana Zha, MD for case / slides
Case 3: To ED 34 days later

- 2-weeks of worsening dyspnea on exertion
- Low-grade fever
- Non-productive cough
- Chest pressure
- In ED, hypoxic to 82% on room air

Special thanks to Shoshana Zha, MD for case / slides
Case 3: Physical exam

- Vitals: BP 104/53, HR 84, RR 20, O2 Sat 96% on 10LPM supplemental oxygen

- CV: Irregularly irregular. PMI displaced laterally. No murmurs. JVD 7 cm at 30 degrees. Trace edema BLE.

- Resp: Speaking in 3-4 word sentences. Bibasilar crackles.

Special thanks to Shoshana Zha, MD for case / slides
Case 3: Laboratories/data

VBG (ABG not obtained): 7.46 / PCO2 45/

BUN 30, Cr 1.55 (baseline 1.3), Electrolytes WNL

WBC 12.2 with 10.45 N, 0.68 L, 0.84 M, 0.15 E

LFTs WNL

Troponin 0.1, EKG without significant changes

Special thanks to Shoshana Zha, MD for case / slides
Special thanks to Shoshana Zha, MD for case / slides
Special thanks to Shoshana Zha, MD for case / slides
Special thanks to Shoshana Zha, MD for case / slides
Special thanks to Shoshana Zha, MD for case / slides
Special thanks to Shoshana Zha, MD for case / slides
Special thanks to Shoshana Zha, MD for case / slides
Special thanks to Shoshana Zha, MD for case / slides
Case 3 - progression

- Day after admission, O2 titrated up to 10-12LPM
- On review with wife, prednisone had been discontinued

Special thanks to Shoshana Zha, MD for case / slides
Case 3 - improvement

- Started on prednisone 40mg/day and down to 2LPM within 4 days
- Discharged to take 20mg/day x 2 weeks, then 15mg/day until follow-up

Special thanks to Shoshana Zha, MD for case / slides
Radiation induced lung injury

<table>
<thead>
<tr>
<th>Radiation Pneumonitis</th>
<th>Radiation Induced Organizing Pneumonia</th>
<th>Radiation Induced Fibrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6 months</td>
<td>3 – 6 months</td>
<td>>6 months</td>
</tr>
<tr>
<td>Dry cough</td>
<td>Dry cough</td>
<td>May be asymptomatic</td>
</tr>
<tr>
<td>Progressive dyspnea</td>
<td>Progressive dyspnea</td>
<td></td>
</tr>
<tr>
<td>Low-grade fevers or chills</td>
<td>Low-grade fevers or chills</td>
<td>High chronic inflammation → circulating platelet-derived and basic fibroblast growth factor</td>
</tr>
<tr>
<td>Malaise</td>
<td>Malaise</td>
<td></td>
</tr>
<tr>
<td>Pleuritic chest pain</td>
<td>More diffuse disease</td>
<td></td>
</tr>
<tr>
<td>Immediately capillary leakiness, delayed exudative alveolitis</td>
<td>Priming of lymphocytes</td>
<td></td>
</tr>
</tbody>
</table>

Murray et al, 2012. Radiation oncology, 7123
Ding et al. 2013 Curr drug targets. 14, 1247-1356
Imaging and Radiological grading scale (RTOG)

Radiation Pneumonitis
- I – GGO without fuzziness of subjacent pulmonary vessels
- II – GGO extending beyond radiation field or consolidations
- III – focal consolidation +/- elements of fibrosis
- IV – dense consolidation, traction bronchiectasis, volume loss

Radiation-induced organizing pneumonia
- Outside radiation field → Often more pronounced in contralateral lung
- Migrates
- Relapses

Oie et al, 2013. Radiation Oncology. 856
Kouloulias et al 2014, Asian Pacific J Cancer Prev, 14, 2717-22
Murai et al, 2012. Radiat Oncology 7:123
Risk/Associated factors

- Smoking History
- Age >65
- Underlying lung disease
- Tumor location: mid-lower lung
- Adjuvant chemotherapy
- Risk with stereotatic (SBRT) 5-10% (up to 28% in older trials)
 - Often lower grade disease
 - Risk stage III with larger tumor
- Expression of Krebs Von den lungen-6

Corticosteroids

- Mainstay of therapy since 1950s
- No standard, but initial dose often Prednisone 0.5 – 1 mg/kg
- High risk of relapse, thus slow / prolonged taper is important
 - Literature dating back to 1960s note relapse with rapid withdrawal of steroids
 - Textbooks recommend decrease of 10mg q2weeks – no trials/data of support this recommendation

Experimental approaches

- Pentoxyphylline – reduced fibrosis in rats (Sterreicher et al. 2001)
- Prophylactic anti-inflammatory agents
- Inhaled steroids
- Case reports of azathioprine and cyclosporine

Hekenberens et al., 2016. Radiation Oncology 11:12
Radiation induced lung injury summary

- Important to try to differentiate Radiation Pneumonitis from Radiation Induced Organizing Pneumonia

- If significantly hypoxic, consider steroids but TAPER VERY SLOWLY
Take Home Points

- A single drug can be associated with multiple lung injury patterns
 - Variety of histologic and radiographic patterns
 - Histologic patterns don’t correlate well with imaging findings

- In most situations, must rely on
 - **temporal relationship** between the administration of drug and the onset of lung injury,
 - along with the exclusion of other potential causes, particularly infections and metastatic disease
Take Home Points

- Grade the degree of lung injury to determine the next steps in therapy / management

- If has also received XRT or SBRT, consider Radiation induced lung injury patterns:
 - Radiation Pneumonitis
 - Radiation Induced Organizing Pneumonia
 - Radiation Induced Fibrosis