Pulmonary Toxicity of (Lung) Cancer Therapies

Lorriana Leard, MD Professor of Clinical Medicine Vice Chief, Clinical Operations Pulmonary, Critical Care, Allergy and Sleep Medicine University of California San Francisco

Disclosure Statement

I will discuss off label use and/or investigational use of the following drugs/devices: Prednisone

The following relevant financial relationships exist related to my role in this session: No relationships to disclosure

Outline: Treatment Related Pulmonary Toxicity

Potential Etiologies / Patterns

- 1. <u>Chemotherapy</u> (docetaxel, gemcitabine, bleomycin)
- 2. <u>Targeted therapy</u> (EGFR inhibitors, mTOR inhibitors, PD-1 and PD-L1 inhibitors)
- 3. Radiation therapy
- Diagnosis / Grade of Pneumonitis
- Management

The importance of this challenge

- Many new therapies being developed / approved
- We must be aware of these therapies and understand their mode of action
- Important to learn to recognize, diagnose and effectively manage their toxicities

Case 1: Special Thanks to UCSF Clinical Fellow Alyssa Perez

Case]

> 75 M with a history of A-fib s/p ablation, HTN, and metastatic prostate CA on treatment with docetaxel who presents with hypoxemic respiratory failure requiring high flow nasal cannula

> Onset of SOB 10 days prior
> Rapidly progressed
> On day of presentation, EMS was called after home O2 sat in the 60s
> In ED, hypoxemic and tachypneic in the 30s, placed on HFNC FiO2 100%, 40LPM

Case 1

PMHx/PSHx:

- Metastatic Prostate CA: dx 2006, metastatic in 2013, s/p XRT, antihormone agents, pembrolizumab x 2 (last 1/2017), and now on docetaxel
- 2. HTN
- A-fib s/p cardioversion,
- 4. Appendectomy in 2011
- 5. Laminectomy with fusion in 2013 for metastatases

Family History: father with prostate CA

Social History: never smoker, 1 glass wine nightly, no illicits, no exposures

Home Meds:

- 1. cholecalciferol
- 2. omega-3 fish oil
- 3. Dexamethasone

Allergies: none

EXAM:

Vitals: T: 37.2 HR: 115 BP: 80/60 RR: 30 O2 Sat: 91% (on 100% FiO2)
General: increased work of breathing
CV: irregularly, irregular, tachycardic, S1, S2, no murmurs
Resp: bilateral crackles diffusely
Ext: 2+ pitting edema to the mid shin b/l, +DP and TP pulses

LABS:	
BUN	41
Creat	1.13
WBC	4.4
Hgb	7.6
Trop	< 0.04
BNP	484
LDH	382

Case 1: Hospital course

<u>Day 1:</u>

Started on vancomycin and ertapenem
 Boluses of normal saline → BPs normalized.
 Pan cultured (blood, urine, sputum) & Resp viral panel sent
 Diuresed with lasix

Case 1: Hospital course

<u>Day 2:</u>

- TTE normal (EF 60%)
- Antibiotics broadened to include pseudomonal and atypical coverage. Diuresis continued.
- Micro: cultures remain NGTD, including Resp viral panel
- Remains afebrile, normotensive. Continues on HFNC with FiO2 100% on 40L, sats in low 90s
- ▹CT scan obtained.

Bone Window

Soft Tissue Window

Differential diagnosis?

Case 1: Hospital course

Pulmonary Consulted.

Questions

- What is the diagnosis?
- Could this be Drug (Docetaxel) induced pneumonitis?
- Should we give steroids?

Diagnostic algorithm of pneumonitis

History/Clinical examination

- Lung co-mobidities
- Type and dose of agent
- Symptoms (Cough, Fever, Dyspnoea, Hypoxia)

Omarini, C., Thanopoulou, E. & Johnston, S.R.D. Breast Cancer Res Treat (2014) 146: 245. https://doi.org/10.1007/s10549-014-3016-5

Drug induced Lung Injury

> Unknown prevalence, thought to be under recognized globally

Can be acute, sub-acute, or chronic

Pathogenesis:

- Direct damage to pneumocytes
- Capillary leak syndrome
- Acute or delayed hypersensitivity reaction

1. Drug-induced interstitial lung disease: mechanisms and best diagnostic approaches. Matsuno O. Respir Res. 2012;13:39

2. Schwarz, Marvin; King, Talmadge. Interstitial Lung Disease, 5th Edition. 2011 637-680.

Pre-disposing characteristics

Receiving prior chemotherapy Autoimmune diseases (RA, IBD), Extremes of age Prior radiation Pre-existing lung disease Smoking history

Histologic patterns

NSIP $\square OP$ Interstitial granulomas <u>DAH</u> +/capillaritis DAD

PVOD
DIP
LIP
PAP
Eosinophilic pneumonia

Pharmacological Threat to Lungs: A Case Series and Literature Review. Irfan O, Gilani JA, Irshad A, et al. Cereus. 2017 May; 9(5): e1232 SCHOOL OF MEDICINE * UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

Diagnostic algorithm of pneumonitis

Omarini, C., Thanopoulou, E. & Johnston, S.R.D. Breast Cancer Res Treat (20 146: 245. https://doi.org/10.1007/s10549-014-3016-5

Evaluation of patient with possible Drug Induced Lung Injury

Steps	Comments	
PFTs	 Lung volumes and DLCO (for baseline and monitoring) 	
Chest CT scan	 Exclude other possible diagnoses (tumor progression, pleural effusion, PE) Assess pattern / monitor for change 	
Bronchoscopy	 BAL may be useful to rule out infection (particularly in fever / infection suspected) or to assess the lung inflammation profile TBBx may help to obtain histology, assess for lymphangitic disease 	
Diagnostic tests to exclude opportunistic infections	 Bacterial pneumonia (typical acute lobar pneumonia) Viral pneumonia (Respiratory Viral PCR) Other bacterial infections (including <i>Legionella</i> infection, particularly in hospitalized patients) Invasive fungal infections (e.g., <i>Pneumocystis jiroveci</i>, <i>Pneumocystis carinii</i> infection, Aspergillosis) 	
Consider other causes	Pulmonary edema / Heart failure	

Back to Case 1...

Day 2 continued:

- All micro data NGTD including blood, sputum, urine, and RVP
- Not improving despite diuresis and Echo did not suggest heart failure
- Bronchoscopy considered but deferred given oxygen requirement and DNR/DNI status

Drug induced Lung Injury

Chemotherapeutic Agents		. 7.5	
Bleomycin			
• Bortezomib		2 (4) /	
• Busulfan		2/ \	
Carmustine			
Chlorambucil			
Colony-stimulating factors	Radio	logic and Pathologic Findings	
Cyclophosphamide		with Docetaxel Induced Lung Injury:	
Cytarabine			
• Deferoxamine		-Acute ILD -Subacute ILD -Transient Infiltrates -Pulmonary Edema -ARDS	
Docetaxel			
• Doxorubicin			
• Erlotinib			
• Etoposide	-AKDS -DAH		
• Fludarabine	-DAD		

Matsuno O. Drug-induced interstitial lung disease: mechanisms and best diagnostic approaches. Respir Res. 2012;13:39

Schwarz, Marvin; King, Talmadge. Interstitial Lung Disease, 5th Edition. 2011 637-680.

Docetaxel induced pneumonitis

Docetaxel = taxane used to treat solid tumors

Proposed Mechanisms of Injury:

- Acute: Type 1 Hypersensitivity reaction
 - Dyspnea, bronchospasm, hypotension
 - Incidence is 30% of patients; decreases to 1-3% of patients with steroid pre-medication

> Acute-Subacute: Type IV Hypersensitivity reaction

- Few hours to 2 weeks
- Characterized by bilateral pulmonary opacities

Grande, C; Villanueva, MJ; Huidobro, G, et al. Docetaxel-induced interstitial pneumonitis following non-small cell lung cancer treatment. Clin Transl Oncol (2007) 9:578-581.

Docetaxel induced pneumonitis Acute-Subacute: Type IV Hypersensitivity reaction

- Presents as insidious onset
- Symptoms: dyspnea, malaise, chest pain, cough, and fever
- Also associated with edematous state: edema and pleural effusions
- Imaging generally shows bilateral pulmonary infiltrates
 - Most common pattern = NSIP, DAD, pleural effusions
- 1. Charpidou, AG; Gkiozos, I; Tsimpoukis, S, et al. Therapy-induced Toxicity of the Lungs: An Overview. Anticancer Research Feb 2009 vol. no. 2 631-639.
- 2. Grande, C; Villanueva, MJ; Huidobro, G, et al. Docetaxel-induced interstitial pneumonitis following non-small cell lung cancer treatment. Clin Transl Oncol (2007) 9:578-581.

Docetaxel induced pneumonitis

Factors that increase likelihood of developing severe pneumonitis:

- Schedule > Dose
- Combination therapy with gemcitabine
- Radiation treatment

A 2012 retrospective study found increased incidence of pneumonitis in patients with NSCLC treated with docetaxel who had baseline pulmonary dysfunction

- 25.9% vs 4.6% general incidence
- Recommended <u>against</u> the use of docetaxel in patients with preexisting lung disease
- 1. Charpidou, AG; Gkiozos, I; Tsimpoukis, S, et al. Therapy-induced Toxicity of the Lungs: An Overview. Anticancer Research Feb 2009 vol. no. 2 631-639.
- 2. Grande, C; Villanueva, MJ; Huidobro, G, et al. Docetaxel-induced interstitial pneumonitis following non-small cell lung cancer treatment. Clin Transl Oncol (2007) 9:578-581.

Docetaxel induced pneumonitis

- Thought to be a a steroid responsive process but case reports range from steroid responsive pneumonitis to steroid unresponsive pneumonitis to development of fibrosis
- General recommendation is prompt treatment with steroids
 - No consensus on dose

- 1. Pankowska-Supryn, M; Zaleska, MI Roszowska-Sliz, B, et al. Interstitial lung disease associated with docetaxel in a patient treated for breast cancer a case report. Pneumonol Alergol Pol 2015; 83: 378-382
- 2. Genestreti, G; Battista, M; Trisolini, R. A Commentary on interstitial pneumonitis induced by docetaxel: clinical cases and systematic review of the literature. Tumori Journal. Vol. 100 Issue 3, May-Jun 2015, pp249-346
- 3. Tamiya, A; Naito, T; Miura, S, et al. Interstitial Lung Disease Associated with Docetaxel in Patients with Advanced Non-small cell Lung Cancer. Antcancer Research 32: 1103-1106 (2012).
- 4. Ochoa, R; Bejarano PA; Gluck, S, et al. Pneumonitis and pulmonary fibrosis in a patient receiving adjuvant docetaxel and cyclophosphamide for stage 3 breast CA: a case report and literature review.

Case 1: Hospital course

<u>Day 3:</u>

- Started on methylprednisolone 125 mg IV Q6 hours
- Patient subjectively feels improved

<u>Day 4:</u>

- Improvement in oxygen requirement to 50% FiO2 40L HFNC
- Patient continues to feel better, no longer tachypneic at rest
- Chest CT repeated

Case 1: Hospital course

<u>Day 5:</u>

> Ongoing improvement, down to 6L NC
 > Steroids changed to prednisone 40 mg PO daily

<u>Day 6:</u>

Discharged homePlan for slow taper of prednisone

Take away points

- Need to consider drug induced lung injury in patients on chemotherapy
- Docetaxel is a rare but well-associated cause of pneumonitis, most commonly presenting with subacute dyspnea and bilateral ground glass opacities
 - Treatment is prompt initiation of steroids, 0.5-0.7 mg/kg prednisone likely sufficient
- Consider avoiding docetaxel in patients with pre-existing lung disease

Case 2:

67 y.o. man with metastatic Prostate Cancer (bone, testes, brain). Initally diagnosed in 2005, s/p multiple treatments. Referred to pulmonary for complaints of dyspnea on exertion, dry cough x 3 weeks and an abnormal chest CT scan.

SpO2 at rest 96% on RA

Case 2 – What is your differential diagnosis?

Metastases to lung
Pulmonary emboli
Infections
Pulmonary edema
Pneumonitis due to drugs or RT

Case 2 Baseline in 3/2017

Case 2 Baseline in 3/2017

Case 2 Baseline in 3/2017

Treated with XRT and adjuvant docetaxel (completed 12/2007)

- 2 years on Goserelin (LHRH analogues) and Bicalutamide (antiandrogens) until 2009
- >Multifocal symptomatic brain mets s/p CK
- >Carboplatin/taxotere \rightarrow 11/2016 1/2017
- New brain mets s/p CK
- Started on pembrolizumab in 3/2017

Diagnostic algorithm of pneumonitis

So lets consider these newer targeted agents?

1. TKIS: EGFR

- 2. mTOR inhibitors
- 3. PD-1 and PD-L1 inhibitors

TKIs and ILD

- Jst case reported in 2003 in Lancet Gefitinib
- Multiple reports since then

	DAD	BO	СОР	HP	IP
Gefitinib	++			+	+
Erlotinib		+	÷	+	
Sorofenib		Ŧ	+		÷

Min, J.H., Lee, H.Y., Lim, H. et al. Cancer Chemother Pharmacol (2011) 68: 1099. school of medicine * University of California, san francisco

mTOR inhibitors

> Sirolimus
> Everolimus
> Temsirolimus

Anti-PD-1 monoclonal antibodies

- Nivolumab
- Pembrolizumab (previously lambrolizumab)
- Pidilizumab

Anti-PD-L1 mAbs

- Durvalumab
- Atezolizumab

PD-1 and PD-L1 mAbs

Toxicities with anti-PD-1/PD-L1 mAbs appear to be less common and less severe

7% to 12% in patients receiving single-agent anti-PD-1/PD-L1 mAbs

PD-1 and PD-L1 mAbs

Adverse events of anti-PD-1/PD-L1 therapy

- Fatigue
- > Pyrexia, chills, infusion reactions
- Skin rash (maculopapular, papulopustular, Sweet's syndrome, follicular, or urticarial dermatitis)
- > Diarrhea/colitis
- Endocrine toxicities (hypophysitis, hypothyroidism, hyperthyroidism, thyroiditis, and adrenal insufficiency)
- > Hepatic toxicities (elevations in AST and ALT levels)
- Pneumonitis

Time to development of pneumonitis after starting PD-1 or PD-L1 inhibitor

J Clin Oncol. 2017 Mar 1; 35(7): 709-717. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559901/ school of medicine University of California, san francisco

Radiographic pattern of pneumonitis on PD-1 or PD-L1

Radiologic Subtypes	Representative Image	Description
Cryptogenic organizing pneumonia-like (n = 5, 19%)		Discrete patchy or confluent consolidation with or without air bronchograms Predominantly peripheral or subpleural distribution
Ground glass opacities (n = 10, 37%)		Discrete focal areas of increased attenuation Preserved bronchovascular markings
Interstitial (n = 6, 22%)		Increased interstitial markings, interlobular septal thickening Peribronchovascular infiltration, subpleural reticulation Honeycomb pattern in severe patient cases
Hypersensitivity (n = 2, 7%)		Centrilobular nodules Bronchiolitis-like appearance Tree-in-bud micronodularity
Pneumonitis not otherwise specified (n = 4, 15%)		Mixture of nodular and other subtypes Not clearly fitting into other subtype classifications

I Clin Oncol. 2017 Mar 1: 35(7): 709-717.

Grade of pneumonitis on PD-1 or PD-L1 inhibitor

J Clin Oncol. 2017 Mar 1; 35(7): 709-717. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559901/

Clinical algorithm of drug-induced pneumonitis/pulmonary fibrosis

Omarini, C., Thanopoulou, E. & Johnston, S.R.D. Breast Cancer Res Treat (2014) 146: 245. https://doi.org/10.1007/s10549-014-3016-5

Case 2 – Follow up

Treated with Prednisone – initially 70 mg (1 mg / kg) daily and slowly tapered over 4 months

1/2018 pembrolizumab restarted

Case 2 – October 2017

Case 2 – October 2017

Case 2 – October 2017

Take Home Points from Diagnosis / Management of Drug Induced Pneumonitis

Omarini, C., Thanopoulou, E. & Johnston, S.R.D. Breast Cancer Res Treat (2014) 146: 245. https://doi.org/10.1007/s10549-014-3016-5

A question for you...

54 year old woman who has been responding to treatment with pembrolizumab for lung cancer now develops Grade 1 drug induced pneumonitis. Which of the following is the most appropriate recommendation?

- A. Stop pembrolizumab permanently
- B. Hold pembrolizumab. If symptoms imaging improves within 1 week, resume therapy.
- C.Continue pembrolizumab with 50% dose reduction.
- D.No dose adjustment if needed. Continue to monitor clinically and with repeat chest CT scans.

A question for you...

54 year old woman who has been responding to treatment with pembrolizumab for lung cancer now develops Grade 1 drug induced pneumonitis. Which of the following is the most appropriate recommendation?

- A. Stop pembrolizumab permanently
- B. Hold pembrolizumab. If symptoms imaging improves within 1 week, resume therapy.
- C.Continue pembrolizumab with 50% dose reduction.
- D.No dose adjustment if needed. Continue to monitor clinically and with repeat chest CT scans.

Grade	Presentation	Diagnostic Testing	Management	Follow up
1	Asymptomatic with Radiographic changes only		Continue therapy Monitor sx q3 days	Repeat Chest CT after every cycle or if develops sx.
2	Mild / Moderate new symptoms	Chest CT scanning Consider Bronch +/- other microbial	HOLD therapy Monitor sx daily Oral prednisone (1mg/kg/d)	If improves to <u><</u> Grade 1 w/in 3 days, resume therapy. If persists, stop therapy. Taper steroids over 1+ mo.
3-4	Severe or life threatening Worsening hypoxia	assessment	STOP therapy Hospitalize IV methylpred 2-4 mg/kg/d	After sx improve to < Grade 1, taper steroids over 6+ wks If worsens, consider additional immuno- suppression

Case 3:

Special Thanks to UCSF Clinical Fellow Shoshana Zha

Case 3: 78 year-old man presenting with worsening dyspnea

<u>2004</u> Adenocarcinoma stage IA RLL lobectomy

<u>February 2017</u> Biopsy proven adenocarcinoma June 2017 Dry cough, low grade fever and progressive dyspnea 7-day treatment for CAP

December 2016 Enlarging right middle lobe nodule <u>March 20th -</u> <u>24th 2017</u> SBRT 5000 cGy in 5 fractions

June 22nd 2017 Admitted to UCSF

Special thanks to Shoshana Zha, MD for case / slides

Case 3: Additional History

<u> PMH</u>

- Type-II DM
- CAD s/p CABG
 6/2016, persistent
 L pleural effusion
- CHF (EF 50-55%)
- A-fib & sick sinus with pacemaker
- HTN
- CKD stage IV
- COPD: FEV1 1.4 (67%)

MEDICATIONS Atorvastatin Metoprolol XL Bumex 2mg BID Coumadin Glargine Pioglitazone Repaglinide Spiriva daily, Albuterol PRN

<u>SH</u>:

Smoked
 50-60 pack
 years, quit

~2003

- Occasional alcohol
- No illicit drug use

Special thanks to Shoshana Zha, MD for case / slides

Case 3: Differential diagnosis

Infection

Radiation pneumonitis
Organizing pneumonia
Diffuse alveolar hemorrhage
Hypervolemia
Malignancy

Case 3: Workup/management

- Started steroids 60mg/day and levofloxacin
 Bronchoscopy without sign of infection or DAH
- Began to improve
- Steroids tapered: 60mg x 6days → 40mg x
 3 days → 20mg daily in setting of rapid improvement + difficult glycemic control
- Discharged on 20mg/day to be taken until follow-up

Case 3: To ED 34 days later

- > 2-weeks of worsening dyspnea on exertion
- Low-grade fever
- Non-productive cough
- Chest pressure
- In ED, hypoxic to 82% on room air

Case 3: Physical exam

Vitals: BP 104/53, HR 84, RR 20, O2 Sat 96% on 10LPM supplemental oxygen

CV: Irregularly irregular. PMI displaced laterally. No murmurs. JVD 7 cm at 30 degrees. Trace edema BLE.

Resp: Speaking in 3-4 word sentences. Bibasilar crackles.

Case 3: Laboratories/data

VBG (ABG not obtained): 7.46 / PCO2 45/

BUN 30, Cr 1.55 (baseline 1.3), Electrolytes WNL

WBC 12.2 with 10.45 N, 0.68 L, 0.84 M, 0.15 E

LFTs WNL

Troponin 0.1, EKG without significant changes

Case 3 -progression

 Day after admission, O2 titrated up to 10-12LPM

On review with wife, prednisone had been discontinued

Case 3 - improvement

 Started on prednisone 40mg/day and down to 2LPM within 4 days

 Discharged to take 20mg/day x 2 weeks, then 15mg/day until follow-up

Radiation induced lung injury

	Radiation Pneumonitis	Radiation Induced Organizing Pneumonia		Radiation Induced Fibrosis
。 <	6 months	 3 – 6 months 	Ο	>6 months
。 D	ry cough	 Dry cough 	0	 May be
	rogressive yspnea	 Progressive dyspnea 	ſ	asymptomatic
	ow-grade fevers r chills	 Low-grade fevers or chills 	Ο	inflammation \rightarrow
• N	lalaise	• Malaise		circulating platelet-
。 Ir ca d	leuritic chest pain nmediately apillary leakiness, elayed exudative lveolitis	 More diffuse disease Priming of lymphocytes 		derived and basic fibroblast growth factor

Murray et al, 2012. Radiation oncology, 7123 Ding et al. 2013 Curr drug targets. 14, 1247-1356 SCHOOL OF MEDICINE UNIVERSITY OF Giridhar et al, 2015. Asian Pac J Cancer Prev, 16(7), 2613-2617

Imaging and Radiological grading scale (RTOG)

Radiation Pneumonitis

I – GGO without fuzziness of subjacent pulmonary vessels
 II – GGO extending beyond radiation field or consolidations
 III – focal consolidation +/- elements of fibrosis
 IV – dense consolidation, traction bronchiectasis, volume loss

Radiation-induced organizing pneumonia

Migrates

Relapses

Oie et al, 2013. Radiation Oncology. 856 Kouloulias et al 2014, Asian Pacific J Cncer Prev, 14 2717-22 Murai et al, 2012. Radiatin Oncology 7:123

Risk/Associated factors

- Smoking History
- Age >65
- Underlying lung disease
- Tumor location: mid-lower lung
- Adjuvant chemotherapy
- Risk with stereotatic (SBRT) 5-10% (up to 28% in older trials)
 - Often lower grade disease
 - Risk stage III with larger tumor
- Expression of Krebs Von den lungen-6

Ochiai et al, 2015. J Radiat Res. 56 (6): 904-11 Yamashita et al, 2014. World J Radiol. 6(9):708-15 SCHOOL OF MEDICINE • UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

Corticosteroids

- Mainstay of therapy since 1950s
- No standard, but initial dose often Prednisone 0.5 – 1 mg/kg
- High risk of relapse, thus slow / prolonged taper is important
 - Literature dating back to 1960s note relapse with rapid withdrawal of steroids
 - Textbooks recommend decrease of 10mg q2weeks – no trials/data of support this recommendation

Otani et al, 2014. Cancer Medicine, 3(4): 947-953 school of medicine * University of California, san francisco

Experimental approaches

Pentoxyphylline – reduced fibrosis in rats (sterreicher et al 2001)

Prophylactic anti-inflammatories

Inhaled steroids

Case reports of azathioprine and cyclosporine

Hekenberens et al, 2016. Radiation Oncology 11:12

SCHOOL OF MEDICINE * UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

Radiation induced lung injury summary

Important to try to differentiate Radiation Pneumonitis from Radiation Induced Organizing Pneumonia

If significantly hypoxic, consider steroids but TAPER VERY SLOWLY

Take Home Points

- A single drug can be associated with multiple lung injury patterns
 - Variety of histologic and radiographic patterns
 - Histologic patterns don't correlate well with imaging findings
- In most situations, must rely on
 - >temporal relationship between the administration of drug and the onset of lung injury,
 - > along with the exclusion of other potential causes, particularly infections and metastatic disease

SCHOOL OF MEDICINE . UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

Take Home Points

Grade the degree of lung injury to determine the next steps in therapy / management

- If has also received XRT or SBRT, consider Radiation induced lung injury patterns:
 Radiation Pneumonitis Radiation Induced Organizing Pneumonia
 - Radiation Induced Fibrosis