Radiation Therapy for Lung Cancer

Megan E. Daly MD Associate Professor Department of Radiation Oncology UC Davis Comprehensive Cancer Center

Disclosures

Research Funding: EMD Serono

Overview: Current use of radiation for Lung Cancer

- Current Status of SBRT for early stage NSCLC
 - Role in operable patients
 - Next directions
- Current Status of Radiation for Locally Advanced NSCLC
 Next directions
- Lung cancer palliation with radiation
- Management of radiation-induced lung toxicity

Radiation for Lung Cancer

- Early stage medically inoperable disease
- Early stage medically operable (investigational)
- Locally advanced (IIIA/IIIB)
- Small Cell Lung Cancer
- Palliation of metastatic disease
- Ablative therapy for oligometastatic/oligoprogressive disease

Radiotherapy for Lung Cancer: Key Issues

- Minimizing Toxicity
 - Small margins (daily setup is crucial)
 - Accounting for lung motion in the planning process
 - Ability to sculpt dose around critical structures
- Maximizing Tumor Control

 Ability to deliver ablative doses while sparing normal tissues

Treatment Planning Challenges

- Proximity to critical structures
- Irregularly shaped target volumes
- Moving tumors

Lung SBRT: Overview and Uses

 Use of highly conformal radiation using ablative doses over 1-5 treatments

Lung Stereotactic Body Radiotherapy (SBRT)

- Standard of care option for medically inoperable patients with early stage non-small cell lung cancer (NSCLC)
- Non-invasive, outpatient procedure over 3-5 sessions
- High local control rates (>90%)

Methods of compensating for respiratory motion

- Free Breathing ITV
- Abdominal Compression
- Respiratory Gating
- Tumor Tracking

Defining an ITV: 4DCT

Respiratory Gating

Abdominal Compression

Lung SBRT: Clinical Outcomes RTOG 0236 (JAMA 2010)

- Phase II study; medically inoperable pts with T1-2 NO NSCLC
- 54 Gy/3 fx
- 3 yr Primary tumor control 97.6%
- 3 yr Local Control 90.6%
- 3 year Distant Failure Rate:
 - T1: 14.7%
 - T2: 47%
- 3 yr Disease-Free Survival 48.3%
- 3 yr Overall Survival 55.8%
- 3.6% rate of grade 4 adverse events

Current Use of SBRT

- Standard Option for Medically Inoperable, peripheral early stage (T1-2 NSCLC < 5 cm)
 - 54 Gy in 3 fractions
- Investigational in medically operable patients
- Investigational for tumors >5cm
- Some concerns of increased toxicity for central lung tumors (within 2 cm of proximal bronchial tree), but protracted regimens of 4-8 fractions are generally considered safe
 - 48-50 Gy in 5 fractions
 - 50-60 Gy in 5 fractions
 - 60 Gy in 8 fractions

Sample SBRT Plan: T2aN0M0 Central NSCLC

Sample SBRT Plan: T1N0M0 Peripheral

SBRT for Operable Patients: Current Status

- Several studies have attempted to compare surgery and SBRT in a prospective, randomized fashion and failed to accrue
- Many retrospective analyses on this topic, but selection bias remains a major problem
 - Propensity matching attempts to limit the bias of retrospective studies by matching patients on baseline characteristics, and reduces influence of varying baseline characteristics
- Surgical management remains the standard therapy for medically operable patients in absence of completed, randomized trials

Prospective Randomized Trials Evaluating SBRT for Operable Patients

Trial	Eligibility	Design	Status
STARS	T1-2aN0M0 <4 cm, fit for lobectomy	Randomized Phase III comparing lobectomy to SBRT	Terminated due to poor accrual
ROSEL	T1-2aN0M0 <4 cm fit to tolerable lobectomy	Randomized Phase III comparing lobectomy to SBRT	Terminated due to poor accrual
ACOSOG Z0499	Peripheral NSCLC ≤ 3 cm; "high" surgical risk	Randomized Phase III comparing sublobar resection to SBRT	Terminated due to poor accrual
JoLT-Ca STABLE-MATES	Peripheral NSCLC ≤ 4 cm; "high" surgical risk	Pre-randomization design; phase III	Actively accruing
Veterans Affairs Lung Cancer Surgery O r Stereotactic Radiotherapy Trial (VALOR)	T1-2N0M0<5 cm fit for lobectomy	Randomized Phase III	Actively accruing
RTOG Foundation 3502 (POSTILV)	T1N0M0 ≤ 3 cm fit for lobectomy	Randomized Phase II	Actively accruing

SBRT Patterns of Failure

Next Directions in SBRT

- Strategies to reduce regional/distant failure
 - Adjuvant chemotherapy
 - Immunotherapy
 - Targeted therapy

UC Davis Stage I Trial

(Chemo)Radiation for Locally Advanced NSCLC

- Definitive Concurrent Chemoradiation for Unresectable IIIA/IIIB disease
- Pre-operative CRT for well-selected, resectable IIIA disease with low-burden N2 disease

Defining Targets

- Gross Tumor Volume (GTV): Radiographically involved tumor or nodes
- Internal Target Volume (ITV): Encompasses tumor excursion due to respiratory motion
- Clinical Target Volume (CTV): Includes additional margin for microscopic spread
- Planning Target Volume (PTV): Additional margin for daily setup error

Locally Advanced NSLC – Technical Advances in RT Planning

- Intensity Modulated Radiotherapy (IMRT) and Volume Modulated Arc Therapy (VMAT)
 - Allow for concave and convex dose distributions
 - For appropriately selected patients improves sparing of normal tissues
 - Creates sharp dose gradients
- <u>4D CT simulation</u>
 - Allows accurate estimation of tumor motion with breathing

Lung Cancer Target Definition

IMRT T4N0M0 NSCLC

IMRT T4N0M0 NSCLC: Sagittal/Coronal

IMRT Planning: T2N3M0 adenocarcinoma

IMRT Planning: T2N3M0 adenocarcinoma

Daily Image Guidance: CBCT

Potential Side Effects of Thoracic Radiotherapy

– Lungs

- Inflammation
- Scarring
- Decreased pulmonary function
- Heart
 - Pericarditis
 - Scarring/valve damage/increased risk of MI or cardiac death
- Spinal Cord
 - Myelopathy
- Esophagus
 - Esophagitis
 - Scarring
- Radiation-induced cancers

Reducing Toxicity for Locally Advanced Lung Cancer

• Pneumonitis

- Major complication of RT for lung cancer
- Recent pooled analysis suggests ~30% rate of symptomatic pneumonitis following CRT for stage III NSCLC (Palma et al, 2013)
- Highest risk groups include elderly and those receiving concurrent carbo/taxol

Approaches to reducing pneumonitis risk

- Reduced margins for setup error and internal motion
 - Daily image guidance
 - Motion management (compression or gating)
 - RT to elective nodal regions is now infrequently used as isolated nodal failure is rare

Emerging Approaches to reducing pneumonitis risk

- Identification and selective avoidance of highfunctioning lung sub-regions
 - 4D CT
 - SPECT
 - Other functional imaging techniques

4DCT Functional Lung Avoidance

4D CT image

Displacement vector field

Ventilation image

Deformable image registration (DIR)

Quantification of regional volume change

Slide courtesy of T. Yamamoto PhD, UC Davis

Treatment of Radiation Pneumonitis

Long prednisone taper is standard for dyspnea
 – 5-6 weeks, starting at 20 mg TID with rapid fall off

Radiotherapy for metastatic lung cancer

• Palliation of painful bone metastases

- 1-10 fractions
- Brain metastases
 - Gamma knife (~1-4 lesions)
 - Whole brain radiation (~30 Gy in 10 fractions)
- SBRT for oligometastatic disease in good performance status patients (investigational)

Conclusions

- Radiotherapy plays an important role in the management of lung cancer
 - SBRT is a standard option for early stage, medically inoperable disease
 - Concurrent or sequential chemoradiation for locally advanced disease
 - Studies are evaluating ways of reducing side effects for these patients
 - Palliation
 - Bone mets, brain mets, airway obstruction, SVC syndrome

Thank you!

Feel free to email me with additional questions medaly@ucdavis.edu

