Symptom Management: Supplemental Oxygen and Other Supportive Therapies for Patients with Interstitial Lung Disease

Susan S. Jacobs RN, MS
Research Nurse Manager, Pulmonary & Critical Care Medicine
Nurse Coordinator, Interstitial Lung Disease Program
Stanford University Medical Center
No Financial Disclosures
Interventions to Manage Symptoms

- Lack of Knowledge
- Dyspnea
- Hypoxemia
- Cough
- Deconditioning
- Worry, Depression, End of Life Concerns
Education: Etiology of ILD

The diaphragm is a muscle below the lungs. It flattens to draw air in as you inhale, then rises as you exhale.

Alveoli are air sacs at the ends of the bronchioles.

Blood vessels surround the alveoli.

Inside alveoli

Inside blood vessel

Interstitium

Scarred interstitium

CO₂

O₂

Bronchioles are the smallest airways.

Damaged alveoli supply less oxygen to the body.
Education: Classification of ILDs

[Diagram showing classification of interstitial lung diseases]

- Exposure Occupational
  - Inorganic
    - Organic
      - Gas/Fumes
    - Radiation
      - (HP)

- Exposure Drug Related
  - Chemotherapy
    - Methotrexate
  - Amiodarone
  - Macrobid
    - (HP)

- Autoimmune/Connective Tissue
  - Rheumatoid Arthritis
  - Lupus
  - Scleroderma
  - Poly/Dermatomyositis
  - Sjogrens
    - (NSIP)

- Familial

- Idiopathic
  - IPF (UIP)
  - AIP
  - NSIP
  - Sarcoid
Education: Classification of ILDs

- **Exposure Occupational**
  - Inorganic
  - Organic Gas/Fumes
  - Radiation (HP)

- **Exposure Drug Related**
  - Chemotherapy
  - Methotrexate
  - Amiodarone
  - Macrobid (HP)

- **Autoimmune/Connective Tissue**
  - Rheumatoid Arthritis
  - Lupus
  - Scleroderma
  - Poly/Dermatomyositis
  - Sjogrens (NSIP)

- **Familial**

- **Idiopathic**
  - IPF (UIP)
  - AIP
  - NSIP
  - Sarcoid
Education: Classification of ILDs

Interstitial Lung Diseases

Exposure Occupational
- Inorganic
- Organic
- Gas/Fumes
- Radiation (HP)

Exposure Drug Related
- Chemotherapy
- Methotrexate
- Amiodarone
- Macrobid (HP)

Autoimmune/Connective Tissue
- Rheumatoid Arthritis
- Lupus
- Scleroderma
- Poly/Dermatomyositis
- Sjogrens (NSIP)

Familial

Idiopathic
- IPF (UIP)
- AIP
- NSIP
- Sarcoid
Education: Classification of ILDs

Interstitial Lung Diseases

Exposure Occupational
- Inorganic
- Organic
- Gas/Fumes
- Radiation (HP)

Exposure Drug Related
- Chemotherapy
- Methotrexate
- Amiodarone
- Macrobid (HP)

Autoimmune/Connective Tissue
- Rheumatoid Arthritis
- Lupus
- Scleroderma
- Poly/Dermatomyositis
- Sjogrens (NSIP)

Familial

Idiopathic
- IPF (UIP)
- AIP
- NSIP
- Sarcoid
Education

• How and When?
  – “ILD New Patient Packet” at new pt. visit
    • List of program personnel and contact info
    • Pulmonary Fibrosis Foundation (PFF) or other ILD educational handouts
    • List of local Pulmonary Rehabilitation programs
    • Oximeter and oxygen information as needed
    • Support Group contacts or schedule
    • “Cough Tips” handout
    • Tailor to the patient (Scleroderma, Sarcoid…)
  – At minimum, a single page with list of resources
Education
Education
Education: Key Points

• Written resources at first visit
• Tailored to diagnosis
• Individualized to changes in pt’s. condition
  – Oxygen
  – Palliative Care
  – Hospice
  – Caregiver Information
• Keep resource file in clinic
Cough
Cough in ILD

1. Chronic cough:
   1. 9-33% in general population,
   2. Up to 80% in IPF

2. Frequency: 24 hr. cough counts
   1. IPF: 226-520
   2. Asthma or COPD: 62
   3. COPD ex-smokers: 118

3. The urge to cough is not relieved by coughing
Cough: Patient’s Perspective:
(email from patient J.K., IPF, hospice care)

• Physical Sensations:
  – “Cannot stop cough or catch my breath which is a terrible sensation;
  – With concentrator set at 15MLS of 02 and finger Oximeter indicating 98% and heart rate of 70-80. 02 sat goes down into the lower 80’s/70’s and heart rate goes up to 125, sides, stomach and ribs hurt. ...... I end up soaking wet from sweat and totally exhausted..... It hits me so hard that my energy/stamina takes about 2-3 hours to return.
  – Cough used to be mid afternoon to early evening. Then it started when I got into bed. Now it will start anytime of the day but it is now also happening during the night, waking me from what has been a good undisturbed sleeping pattern.”

• Emotional sensations:
  – “I always feel like this is the one where I’m in the final phase of IPF and my life will slip away”
“If I Could Just Get Rid of the Cough”

- Embarrassment
- Sick to stomach
- Retching
- Incontinence
- Headache
- Ache all over
- Breathlessness
- Hurts to breathe
- Exhausted
- Unable to do activities
- Dizziness
- Rib fractures
- Sleep interruption
- Can’t talk/phone, sing, laugh
- Decreased socialization
- Change in lifestyle

The greater the cough frequency, the worse the patients’ rating of their cough-related quality of life.

There was no correlation between pulmonary function tests and cough frequency, except for total lung volume.

Patients’ estimation of cough severity correlated well with the cough counter device’s results.

Key AL, Cough, 2010.
Mechanisms of Cough in IPF

1. No correlation between baseline cough severity (VAS) and FEV1, FVC, TLC, DLco
2. Concentration of capsaicin needed to induce cough significantly lower in IPF pts. vs healthy controls
3. No correlation between cough sensitivity to capsaicin and PFTs, HRCT severity, and VAS
4. All 6 prednisone-treated pts. decreased cough by VAS and sensitivity to inhaled capsaicin and SP
5. Sputum in IPF pts. had increased neutrophils, lymphocytes, sputum albumin and neurotrophins as compared to normals

Hope-Gill et al. AJRCCM, 2003
Mechanisms of Cough in IPF

1. Inflammation occurs in proximal bronchial epithelium where sensory innervation is greatest
2. Increased neurotrophins in IPF sputum could affect reactivity, differentiation, and proliferation of sensory nerves = cough
3. “These findings suggest functional up-regulation of lung sensory neurons in IPF and the possibility of abnormalities in the proximal bronchial epithelium”
4. Mechanical ‘pull’ on airways may also trigger cough
5. MUC5B polymorphism may be associated with cough severity in IPF patients

Treatment of Cough

- **PND/UACS**
  - nasal steroids
  - ipratropium
  - antihistamines

- **Asthma**
  - If no improvement:
    - dextrometh, guaifenesin
    - benzonatate
    - prednisone, inhaled steroids
    - baclofen, gabapentin, tramadol
    - nebulized anesthetics
    - thalidomide
    - anti-fibrotics
    - cough suppression therapy
      - education, counselling, cough control, breathing retraining, and vocal hygiene
    - oral opiates

- **GERD**
  - lifestyle mod.
  - dietary mod.
  - PPI
  - surgical Rx
ILD Patient-Reported Cough Management Strategies: Don’t Move, Don’t Talk.
S.S. Jacobs, RN, MS, J.J. Swigris DO, MS, G.D. Rosen, MD, Stanford University Medical Center, Stanford, California, United States.

• Patient-Reported Strategies to Decrease Cough (N=105):
  • Lozenges with cough suppressant/oral anesthetic (especially before making phone call, during ‘social times’)
  • Warm liquids - honey and lemon in hot water
  • Ginger tea, turmeric
  • Sips of water, ice chips, Biotene spray (moisture)
  • Chewing/swallowing carefully, slowly (MCTD pts)
  • Avoiding irritants, triggers
  • ↑ oxygen during coughing as needed
  • Hypnosis
  • Yoga/relaxation/slowed breathing techniques
  • Nothing (29%)
Cough: Key Points

• Research/evidence:
  – IPF patients have ‘up-regulated’ airways (Hope-Gill et al. AJRCCM 2003)
  – Prednisone decreases cough sensitivity and frequency (Hope-Gill et al. AJRCCM 2003)
  – Thalidomide decreases cough scores and increased QOL scores in IPF patients but has associated toxicity (Horton et al. Ann Intern Med 2012))
  – IPF patient estimates of how often they cough are extremely accurate (Key. Cough 2010)
  – Mechanical percussion on the chest wall produced cough in 85% of IPF pts. compared to 17% of healthy control subjects (Jones et al. BioMed Central 2011)
  – Cough impacts QOL for all types of ILD patients (Jacobs et al. AmJRespirCritCare Med 2014, A2455)
  – Many ILD patients may have more than one cause of their cough
  – Cough predicts prognosis in IPF (Ryerson et al. Respirology. 2011)

• Treatment:
  – Cough has not been improved by any of the approved or investigational IPF drugs
  – Most patient-reported strategies include decreasing activity and socialization
  – Management is multi-faceted and includes ruling out other causes of cough, educating the patient on strategies, trying low dose steroids and narcotics, and considering alternative Rx such as cough suppression training or hypnosis
Dyspnea
Mechanisms of Dyspnea

Scarring
Decreased Compliance
Ventilatory Restriction
Diffusion Impairment
V/Q Mismatch
Increased WOB
Rapid Shallow Breathing

Dyspnea

Lung receptors, hypoxemia, deconditioning, anxiety and depression
# First Line Treatment for Dyspnea in ILD: Pulmonary Rehabilitation

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample</th>
<th>Δ 6MW, m</th>
<th>Dyspnea</th>
<th>QOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dowman et al 2017 RCT</td>
<td>142 ILD</td>
<td>25</td>
<td>Improved</td>
<td>Improved</td>
</tr>
<tr>
<td>Nakazawa et al 2017 Review</td>
<td>NA</td>
<td>NA</td>
<td>Improved</td>
<td>Improved</td>
</tr>
<tr>
<td>Ryerson et al 2014</td>
<td>54 ILD</td>
<td>57</td>
<td>Improved</td>
<td>Improved</td>
</tr>
<tr>
<td>Holland et al 2012</td>
<td>44 ILD</td>
<td>21</td>
<td>Improved</td>
<td>NA</td>
</tr>
<tr>
<td>Huppman et al 2013</td>
<td>402 ILD inpt.</td>
<td>46</td>
<td>Improved</td>
<td>Improved</td>
</tr>
<tr>
<td>Kozu et al 2011</td>
<td>65</td>
<td>31 (MRC 2)</td>
<td>Improved</td>
<td>NA</td>
</tr>
<tr>
<td>Swigris et al 2011</td>
<td>21</td>
<td>62</td>
<td>Fatigue improved</td>
<td>SF36 non sig</td>
</tr>
<tr>
<td>Garvey 2010 Review</td>
<td>NA</td>
<td>NA</td>
<td>Improved</td>
<td>Improved</td>
</tr>
<tr>
<td>Salhi et al 2010</td>
<td>11 RLD</td>
<td>107</td>
<td>Improved</td>
<td>SGRQ non sig</td>
</tr>
<tr>
<td>Ferreira et al 2009</td>
<td>99</td>
<td>56</td>
<td>Improved</td>
<td>NA</td>
</tr>
<tr>
<td>Holland et al 2008 RCT</td>
<td>57</td>
<td>35</td>
<td>Improved</td>
<td>Improved</td>
</tr>
<tr>
<td>Nishiyama et al 2008 RCT</td>
<td>30</td>
<td>42</td>
<td>No Change</td>
<td>Improved</td>
</tr>
<tr>
<td>Jastrzebski et al 2006</td>
<td>31</td>
<td>NA</td>
<td>Improved</td>
<td>Improved</td>
</tr>
<tr>
<td>Naji et al 2006</td>
<td>26</td>
<td>NA</td>
<td>Improved</td>
<td>Improved</td>
</tr>
</tbody>
</table>
Impact of Exercise on Dyspnea

- Builds endurance
- Strengthens muscles
- Desensitization to SOB
- Improves mood
- Facilitates independence, travel, and socialization
- Maintains ideal weight
- Decreases anxiety, panic
- *Does not change PFTs*

[http://www.cspr.org/find-a-program](http://www.cspr.org/find-a-program)
Pulmonary rehabilitation improves long-term outcomes in interstitial lung disease: A prospective cohort study

Christopher J. Ryerson, Cindy Cayou, Fiona Topp, Lana Hilling, Pat G. Camp, Pearce G. Wilcox, Nasreen Khalil, Harold R. Collard, Chris Garvey

• Methods:
  • 54 ILD patients recruited from 3 PR programs (22 with IPF)
  • 6MWD, QOL, dyspnea, depression, physical activity measured pre, post, and 6 months post program

• Results:
  • 6MW improved 57.6 m post (p<0.0005), and 49.8 m 6 mo f/u (p=0.005)
  • Low baseline 6MWD= only predictor of improvement
  • Change in 6MWD predicted change in QOL
  • ILD patients with low baseline 6MWD had greater benefit from PR

Impact of PR on QOL in ILD Pts.

Other Rx for Dyspnea

- Pursed lip breathing/breathing retraining
- Fan/cold air/open windows
- Relaxation/visual imagery/meditation
- Distraction: headphones, social interaction
- Yoga (modified)
- Small meals
- Ideal body weight
- Oxygen if hypoxemic
- Opiates/Narcotics/Anti-anxiety drugs
Dyspnea: Key Points

• “Complex interplay between mechanical, neurologic and psychological factors” (Garibaldi and Danoff, Respirology 2016)

Exercise

- Regular, planned exercise can improve endurance, shortness of breath, quality of life and decrease panic, anxiety and depression
- Deconditioning can be more limiting than the level of disease reflected on PFTs

Education

Oxygenation
Dyspnea: Key Points

• “Complex interplay between mechanical, neurologic and psychological factors” (Garibaldi and Danoff, Respirology 2016)

Exercise
  • Regular, planned exercise can improve endurance, shortness of breath, quality of life and decrease panic, anxiety and depression
  • Deconditioning can be more limiting than the level of disease reflected on PFTs

Education
  • Exercise benefits are a result of desensitization to SOB as well as motivation
  • Exercise has demonstrated more consistent benefits for decreasing SOB and increasing QOL and exercise capacity than any IPF clinical drug trials

Oxygenation
Dyspnea: Key Points

- “Complex interplay between mechanical, neurologic and psychological factors” (Garibaldi and Danoff, Respirology 2016)

**Exercise**
- Regular, planned exercise can improve endurance, shortness of breath, quality of life and decrease panic, anxiety and depression
- Deconditioning can be more limiting than the level of disease reflected on PFTs

**Education**
- Exercise benefits are a result of desensitization to SOB as well as motivation
- Exercise has demonstrated more consistent benefits for decreasing SOB and increasing QOL and exercise capacity than any IPF clinical drug trials

**Oxygenation**
- Assess all patients for the need for oxygen during rest, exertion, and sleep
- Adequate oxygenation during exercise remains a challenge for many patients with ILD
Oxygen

- Prescribe for relief of hypoxemia, dyspnea, improved mobility and QOL, and improved survival

- Assess oxygen saturations at rest and exercise at regular intervals

- Provide pt. with written oxygen education materials, phone number to call if questions (1 800 MEDICARE), and discuss expectations

- Test patient in clinic and document in clinician notes:
  - Resting room air
  - Exertion room air
  - Exertion on oxygen and document liter flow needed to keep saturations above 90%

- Document in clinician notes:
  - lifetime need
  - delivery mode (nasal cannula)
  - use of pulse systems if OK
  - use of oxygen conserving device such as Oxymizer Pendant
  - specific device you are requesting (POC, liquid, etc…) and medical necessity/rationale
Liquid Oxygen

- Oxygen cooled down to liquid; able to provide larger amt. oxygen in smaller canister
- Delivers up to 10 L/min. cont. flow (different units for higher flow).
- Uses homefill system
- Higher costs of liquid:
  - More frequent delivery
  - Longer time to service
  - More customer needs
Compressed Gas Oxygen:

**E Tank:**
compressed gas, semi-portable, lasts 3 hrs. on 3L/min continuous or 1.5 hrs on 5 L/min

**M6 (B) Tank:**
compressed gas, portable, lasts with OCD or OCR

**Transfill Systems:**
Homefill
I Fill
Ultra Fill
Portable Oxygen Concentrators: Size Matters!

- 3-20 lbs
- Uses battery; concentrates ambient air to 90-96% oxygen
- Can run off DC power
- FAA approved; need battery for 1.5 x hours of flight
- Higher liter flow = shorter battery life
- Very important to get tested on the system BEFORE you purchase it
- No continuous flow > setting of 3 or pulse flow over 6
Portable Oxygen Concentrators:

The Pulmonary Paper ‘POC Annual Review’ is a great resource for patients

www.pulmonarypaper.org
• Aim: Explore perspectives of respiratory physicians about domiciliary oxygen therapy in ILD pts.
• Interviews of 25 Australian physicians
• Results:
  – Symptom relief was primary goal
  – Concerns raised regarding lack of clinical guidelines
  – Physicians perceived that ILD pts. were more compliant with DOT
  – Much variation with equipment, support, prescription
  – Main concern heard from patients = social stigma and sign of end-stage disease
Patient Perceptions of the Adequacy of Supplemental Oxygen Therapy
Results of the American Thoracic Society Nursing Assembly Oxygen Working Group Survey

Susan S. Jacobs¹, Kathleen O. Lindell², Eileen G. Collins³, Chris M. Garvey⁴, Carme Hernandez⁵, Sally McLaughlin⁶, Ann M. Schneidman⁷, and Paula M. Meek⁸

¹Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California; ²Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease at University of Pittsburgh Medical Center, and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; ³Biobehavioral Health Science, College of Nursing, University of Illinois/Research Service, Hines Veterans Affairs Hospital, Chicago, Illinois; ⁴Sleep Disorders and Pulmonary Rehabilitation, Department of Medicine, University of California–San Francisco, San Francisco, California; ⁵Integrated Care Unit, Hospital Clinic de Barcelona/University of Barcelona, Barcelona, Spain; ⁶Interstitial Lung Disease Clinic, University of California–San Francisco, San Francisco, California; ⁷Hospice of the Valley, Phoenix, Arizona; and ⁸College of Nursing, University of Colorado at Denver, Denver, Colorado

ORCID ID: 0000-0002-8808-0038 (S.S.J.).
Results: 51% of sample experienced problems with their oxygen

What types of oxygen problems do you have? (n=899)

(Able to select more than one choice)

- Equipment Not Working: 499
- Travel oxygen problems: 268
- Delivery Problems: 267
- Lack of portables I can manage: 260
- Other: 220
- Lack of high flow portable systems: 219
- Not enough tanks for activity outside home: 201
- Can't change companies: 177
- Company does not respond to calls: 169
- Incorrect or delayed MD orders: 166
- Can't mix systems: 123
- Need or used to use liquid and can't get: 86
- Bills not explained: 68
- Not enough portables so I can work: 40

Average # problems per respondent = 3.5
Oxygen: Key Points

- Oxygen Rx is key turning point for patients
  - significant hallmark in a patient and family’s disease trajectory
  - a cumbersome treatment.
  - pts. report problems with equipment, access and angst/concern/worry. (Lindell et al Am J Resp Crit Care Med 2017 A7646)

- Written and in-person oxygen education and equipment training by clinicians can mitigate some of these problems

- Provide pts. 1 800 MEDICARE to call with unresolved problems

- Medicare does not pay for travel oxygen; arrange FAR in advance with DME and MD; continued travel is important to the QOL of patients

- Test patients in clinic on the equipment they use at home
Isolation, Depression, Anxiety

- Support groups - in person, online
- Use of Social Worker in clinic
- Palliative Care Referral
- Address Caregiver needs
Isolation, Depression, Anxiety: Social Support

- Educational Seminar for patients and families offered by every other year by UCD, UCSF, and Stanford. Attendance between 200-300; next at UCSF, Mar/Apr 2019
- PFF Summit mtg. every other yr.- next in 2019 possibly Nashville
Isolation, Depression, Anxiety: Social Support

- On line support groups
  - www.rareconnect.org
  - www.plmjoin.com/ipf
  - www.pulmonaryfibrosis.org
  - “PFF Voices”-Teleconnect Support Group- a call-in support group offered monthly by the PFF with guest speakers and a moderator
Isolation, Depression, Anxiety: Key Points

- Connect patients to resources!
- Support groups, pulmonary rehab, educational events
- Encourage travel, socialization
- Social worker, counseling as needed
Supportive Therapies for ILD Patients: Summary

- Lack of Knowledge
- Dyspnea
- Worry, Depression, End of Life Concerns
- Hypoxemia
- Cough
- Deconditioning

Symptom Mngmt
Questions?

Susan Jacobs RN, MS  (650) 725-8083  ssjpulm@stanford.edu