Primary Ciliary Dyskinesia Clinical Presentation and Diagnosis

Douglas Conrad California Thoracic Society January, 2018

Disclosures

Current Funding: NIH RO1 National CF Foundation Gilead Sciences

Potential Conflict of Interests: None

Acknowledgments: Michael Knowles* (primary slide set) Michelle Manion PCD Foundation

OVERVIEW

Introduction Motile & Non-Motile Cilia PCD Clinical Presentation Diagnostic Approaches & Challenges

- Clinical Phenotype
- Electron Microscopy
- Genetic Screening
- Nasal NO (nNO)

Primary Ciliary Dyskinesia Timeline:

Primary Ciliary Dyskinesia

Rare genetically heterogeneous recessive disorder (1 in 15-30,000 live births; ~15,000 patients in U.S.)

Disease reflects abnormal ciliary biogenesis, structure, and/or function, and occurs in organs where motile cilia pay an important role:

- Neonatal respiratory distress (\geq 80%).
- Chronic daily wet cough from birth (97%).
- Chronic airway disease with age-dependent bronchiectasis (100%, adults).
- Chronic nasal congestion; sinusitis.
- Recurrent otitis media (90%); "glue ear" with frequent hearing loss.
- Reduced fertility (nearly all males).
- ~50% have situs inversus or heterotaxy (Kartagener's).

Types of Cilia

Axoneme (Cilia / Flagella) Structure and Function

- Ciliary Beat:
 - Coordinated waves beat in simple backward and forward motion
 - Frequency 8-15 Hz

• Ciliary Axoneme

- Highly conserved structure and function across the species
- o Composed of >250 proteins
- 9+2 configuration (9 peripheral MT doublet surrounding central pair)
- \odot Each MT doublet consists of several dynein HC, IC and LC
- ATPase of dynein arms provide energy of ciliary beat

Clinical Presentation and Criteria

Lobar Collapse Occurred in 70% of PCD Cases but No Controls

Mullowney, T., et. al., Pediatrics 2014; 134(6):1160-1166

Specificity and Sensitivity of Rigorous Clinical Criteria for PCD in Children and Adolescents

- 1. Unexplained neonatal respiratory distress (lobar collapse and/or need for CPAP and/or $O_2 \ge 24$ hrs
- 2. Daily, year-round wet cough starting in 1st year of life
- 3. Daily, chronic nasal congestion starting in 1st year of life
- 4. Organ laterality defect

# Clinical Criteria met (max=4)	Sensitivity	Specificity	Probability of PCD
4	16.8%	99.2%	0.96
3	47.2%	97.3%	0.88
2	73.6%	77.6%	0.66
1	93.6%	53.2%	0.34

Thoraco-Abdominal Asymmetry

- Situs Solitus Normal (99.99%)
- Situs Inversus Totalis
- Heterotaxy (Situs Ambiguus)

Embryonic Nodal Cilia

Hirokawa et al., 2006, Cell

McGrath and Brueckner, 2003, Curr. Opin. Genet. Dev.

Thoraco-Abdominal AsymmetrySitus SolitusSitus InversusTotalisAbd SitusInversusIsolatedDextrocardia

Heterotaxy (Situs Ambiguus)

Situs Solitus

Situs Inversus Totalis

Right Isomerism* (Asplenia Syndrome)

Left Isomerism* (Polysplenia Syndrome)

Bartram et al., 2005, Biol. Neonate

Situs Status and Congenital Heart Disease in PCD Patients*

Patients with congenital heart disease and heterotaxy have worse outcome after cardiac surgery; possibly due to PCD and lung complications? New Report: Some patients with CHD and heterotaxy have ciliary dysfunction⁺.

*Shapiro, A, et al 2014, *Chest* Nakhleh, N, 2012, *Circulation*

Radiographic (CT) Imaging* in PCD Bronchiectasis: Adults (35; 100%); Pediatrics (56; 70%)

*Jain et al., 2007, *Clin. Radiol.;* Kennedy et al., 2007, *AJR*; Santamaria et al., 2008, *Chest*

Consensus-based PCD Diagnostic Criteria*

Newborns (0 to 1 month of age)

Situs inversus totalis and unexplained NRD at term birth, plus at least one of the following:

Diagnostic ciliary ultrastructure electon micrographs or two mutations in PCD-associated gene

Children (1 month to 5 years)

Two or more major PCD clinical criteria (NRD; wet cough; nasal congestion; laterality defect), **plus** at least one of the following (nasal nitric oxide included in this age group, since it is not yet sufficiently tested):

Diagnostic ciliary ultrastructure on electron micrographs

Two mutations in one PCD-associated gene

Persistent and diagnostic ciliary waveform abnormalities on high-speed videomicroscopy, on multiple occasions

Children and adults 5-18 years of age

Two or more PCD clinical criteria (NRD; wet cough; nasal congestion; laterality defect), **plus** at least one of the following:

Nasal nitric oxide during plateau <77nL/min on 2 occasions, >2 months apart (with cystic fibrosis excluded)

Diagnostic ciliary ultrastructure on electron micrographs

Two mutations in one PCD-associated gene

Persistent and diagnostic ciliary waveform abnormalities on high-speed videomicroscopy, on multiple occasions

* Pediatric Pulmonology, Shapiro et al, Sept 2015

Ciliary Ultrastructure: Electron Microscopy

Ciliary Ultrastructural Defects (previously "gold std" for dx)

Samples obtained without anesthesia from the inferior nasal turbinate using brush or curette

- Dynein Arms Defects
 - Absence/shortening ODA, alone
 - Absence /shortening IDA, alone ("caveat")
 - Absence/shortening ODA+IDA
 - Absence of IDA + Microtubular Disorganization
- Central Complex Defects (up to 90% may appear normal)

9+2 configuration

Absent IDA + MTD

~ 30% of PCD patients have normal (or non-dx) ciliary ultrastructure.

Inner Dynein Arm (IDA) Defect, alone: Transient*

- IDAs have low contrast on EMS
- 5 of 21 patients with IDA defect (IDAs missing) were retested, and found to have normal IDAs and normal ciliary function.*
- IDA may appear (falsely) to be missing, perhaps due to non-specific biological or technical artifacts.
- Patients with an IDA defect should undergo repeat study to confirm.

O'Callaghan, C., et. al., Eur. Respir. J., 2011; 38(3):603-7.

NOT All PCD has EM Defects

Well recognized there are many patients (~30% of PCD) with a strong clinical phenotype for PCD (NRD; respiratory and ear symptoms; situs inversus), and low NO (+/- abnormal HSVM), with normal (or non-diagnostic) EMs.

Many of these patients have genetic confirmation of PCD with loss-of-function mutations in DNAH11 or RSPH genes or nexin link genes.

PCD cannot be confirmed in such patients by ciliary ultrastructural studies.

Confounding Factors for Using Ciliary EMs for Confirmatory Diagnosis of PCD

- 1. Need ciliated cell biopsies, and inflammation/infection can cause <u>"secondary" changes</u> to ciliary ultrastructure.
- 2. Adequate *fixation* is critical.
- 3. These small samples are processed by *multiple technical steps*, including getting adequate ultrathin cross-sections for EM, and technician must select correct images (multiple cells).
- 4. <u>Evaluation requires an adequate (>20) number of interpretable images</u> <u>from different cells, including good contrast.</u>
- 5. <u>Interpretation requires recognition of normal variability</u>, and an understanding of EM changes that may occur as non-specific ("secondary") effects, such as absent central microtubules, "extra" central and peripheral microtubules, and compound cilia. Further complicated by recent genetic etiologies, where as many as 90% of cilia may appear normal (RSPH; nexin links).

Primary Ciliary Dyskinesia Genetics

Discovery of PCD-Associated Genes: 37 Genes Sorted by Year of Discovery

Years	Genes
1999	DNAI1
2002	DNAH5
2004-07	OFD1, RPGR, NME8
2008	DNAAF2, DNAI2, DNAH11
2009	DNAAF1, RSPH4A, RSPH9
2011	DNAL1, CCDC39, CCDC40
2012	CCDC103, DNAAF3, HEATR2, HYDIN, LRRC6
2013	ARMC4, C21orf59, CCDC114, CCDC164, CCDC65, DNAH8, DYX1C1, RSPH1, SPAG1, ZMYND10
2014	CCNO, MCIDAS, CCDC151
2015	DNAH1, RSPH3, GAS8
2016	TTC25, DNAJB13

Mutation Statistics: Published & UNC unpublished to Mid-2014

- Total 509 independent Mutant Alleles from 32 genes
- Total 673 unrelated cases with biallelic mutations in PCD gene

Total 673 Unrelated Cases Top 5 Vs 27 Remaining Genes

Top 5 genes (based on published literature): DNAH5 (15-29%), DNAH11 (6-9%),

CCDC39 (4-9%),

DNAI1 (2-10%),

CCDC40 (3-4%).

Top 5 genes contributes ~ 2/3rd of all solved cases (42% of all cases)

~4/5th alleles are LOF in both

Ciliary Ultrastructural Association: Currently 37 Genes Associated with PCD

 37 Genes: accounts for ~ 33 Genes: for Ciliary Struct 2 Genes: for Cilia Biogener 2 Genes: associated with 	2/3 rd of all PCD cture & Function esis other Syndromes as well	
ODA defects DNAH5* DNAI1*	IDA+MTD defects CCDC39* CCDC40*	Oligocilia CCNO MCIDAS
DNAI2 DNAL1 NME8 (TXNDC3) CCDC114 CCDC151 ARMC4	RS/CP defects RSPH1 RSPH3 RSPH4A RSPH9	EM not available DNAH8 DNAH1
ODA+IDA defects DNAAF1 (LRRC50) DNAAF2 (KTU) DNAAF3 LRRC6 C21orf59 HEATR2 ZMYND10 DYX1C1 SPAG1 CCDC103	Norns HYDIN Nexin-link defects CCDC164 (DRC1) CCDC65 (DRC2)	PCD+other syndrome (n=2)RPGR (X-linked RP+PCD) OFD1 (X-linked MR+PCD)
	Normal EM DNAH11*	* Top 5 mutated genes Mut in 65% cases (42% of all)

Clinical Manifestations in RSPH1 Subjects in Consortium

Seem to resemble PCD with dynein arm defects: all had bronchiectasis by mid-late teenage years, and most had recurrent otitis media and sinusitis in childhood. HOWEVER

- All had situs solitus.
- Neonatal Respiratory Distress: only 50% vs expected >80%.
- Daily, year round wet cough in 1st year of life: only 13% vs >90%.
- Lung function better vs age and gender matched PCD.

Subjects	Ν	Mean age (years)	Mean FEV ₁ (% Pred.)
RSPH1	15	35.3 ± 18.6	73.0 ± 23.9
All PCD	75	34.2 ± 17.6	61.8 ± 22.8*
ODA/ODA+IDA	45	35.7 ± 18.8	61.6 ± 23.2+

NIH Public Access

Author Manuscript

Thorax. Author manuscript; available in PMC 2013 August 09.

Published in final edited form as:

Thorax. 2012 May; 67(5): 433-441. doi:10.1136/thoraxjnl-2011-200301.

Mutations of *DNAH11* in Primary Ciliary Dyskinesia Patients with Normal Ciliary Ultrastructure

Michael R Knowles¹, Margaret W Leigh², Johnny L Carson², Stephanie D Davis², Sharon D Dell³, Thomas W Ferkol⁴, Kenneth N Olivier⁵, Scott D Sagel⁶, Margaret Rosenfeld⁷, Kimberlie A. Burns¹, Susan L Minnix¹, Michael C Armstrong¹, Adriana Lori¹, Milan J Hazucha¹, Niki T Loges^{8,10,11}, Heike Olbrich¹⁰, Anita Becker-Heck^{8,10,11}, Miriam Schmidts⁸, Claudius Werner¹⁰, Heymut Omran^{8,10}, Maimoona A Zariwala⁹, and The Genetic Disorders of Mucociliary Clearance Consortium

¹Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA

²Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC, USA

CCDC39/CCDC40 (FEV₁ % Pred.)

*p=0.012, worse than ODA/ODA+IDA

Davis, S, et al, 2015, AJRCCM.

Ciliary EMs for RSPH1 Mutations

	(A) Normal Axonemal Structure	(B) or Electron Dense Material (C)	(D) Center or Other Site (E) or Other Changes (e.g., 8+0) (F)	(G) Single Microtubule in Center	(H) Off-Center Central Pair
Mean	80.1%	12.1%	5.1%	1.4%	1.2%
Range	63.4 – 93.1%	0 - 24.7%	3.0 – 14.1%	0 – 5.9 %	0 – 6.9%

Primary Ciliary Dyskinesia: nasal Nitric Oxide

Nasal Nitric Oxide (nNO) in PCD (age <a>5 years) (EM defect; DNAH11) and Healthy Controls*

Also studied >150 Disease Controls, and Replicated at other Consortium Sites. Specificity >0.99; Positive and Negative Predictive Value >0.95 & >0.99, *if rule* <u>out CF.</u>

*Leigh MW, Ann Am Thorac Soc. 2013 Dec:10(6):574-81.

Primary Ciliary Dyskinesia:

 Diagnostic ciliary waveform abnormalities on high-speed videomicroscopy

Offered at specialized PCD centers of excellence

Conclusions

- 1. PCD is a recessive genetic disease caused by genetic variation in the proteins that are involved in the structure, function and biogenesis of cilia.
- 2. The clinical presentation of PCD varies considerably but includes a) neonatal respiratory distress syndrome, b) chronic sinopulmonary disease c) recurrent otitis media, d) thoraco-abdominal assymetry including situs inversus and heterotaxy.
- 3. A PCD diagnosis requires an integrated approach that uses clinical parameters, ciliary electron microscopy, genetic testing, nasal nitric oxide assessments and potentially the use of high speed videomicroscopy.
- 4. Electron microscopy is normal in 30% of patients and is technically challenging to perform and interpret
- 5. Genetic screening is commercially available and in some cases informs prognosis but does not currently capture all cases
- 6. Nasal nitric oxide and videomicroscopy are specialized techniques available at centers of excellence.

4 Consortium Sites(2004); soon, 24 PCD sites

